import math import numpy as np import matplotlib.pyplot as plt import calc_way import get_data import calc_slope_line import cv2 import model import os import time import glob import JS model = model.Model() alpha = model.alpha beta = model.beta q=model.q def vs_measurement(txt_name, position = 784, config_path: str = None): cameraModel = JS.CameraModel(config_path) # 加载数据 state, x_bot, y_bot, slope_bot, intercept_bot, x_top, y_top, slope_top, intercept_top = get_data.get_data(txt_name) if state == 0: return 0, None, None # # 拟合上下沿 # slope_bot, intercept_bot, r2_bot = calc_slope_line.linear_regression(x_bot, y_bot) # slope_top, intercept_top, r2_top = calc_slope_line.linear_regression(x_top, y_top) Xw_bot = [] Yw_bot = [] for i in range(len(x_bot)): Xw, Yw = calc_way.calc_distance(x_bot[i], y_bot[i], alpha,beta) Xw_bot.append(Xw) Yw_bot.append(Yw) slope_Xw, intercept_Xw, r2_Xw = calc_slope_line.linear_regression(Xw_bot, Yw_bot) # 计算路沿与车身夹角 angle = math.atan(slope_Xw) # 位置修正 position = position # 确认目标点位置并计算高度 Yw_pos = slope_Xw * position + intercept_Xw x_pos, y_pos = calc_way.calc_distance2(position, Yw_pos, alpha, beta) # print(x_pos, y_pos) k_pos = calc_slope_line.get_k(alpha, beta, x_pos, y_pos) b_pos = calc_slope_line.get_b(x_pos, y_pos, k_pos) # print(k_pos, b_pos) x_pos_top, y_pos_top = calc_slope_line.find_intersection((k_pos, -1, b_pos), (slope_top, -1, intercept_top)) Zw_pos = calc_way.calc_height(x_pos, y_pos, x_pos_top, y_pos_top, alpha, beta) distance_pos = -(Yw_pos - 53) * math.cos(angle) return 1, Zw_pos, distance_pos def vs_measurement_pic(txt_name, img_path, output_folder): # #画图 # fig, axes = plt.subplots(nrows=4, ncols=2, figsize=(10, 8)) state, x_bot, y_bot, slope_bot, intercept_bot, x_top, y_top, slope_top, intercept_top = get_data.get_data(txt_name) if state == 0: return 0, None, None for i in range(len(x_bot)): k = calc_slope_line.get_k(alpha,beta,x_bot[i],y_bot[i]) b = calc_slope_line.get_b(x_bot[i],y_bot[i],k) x = (intercept_top - b) / (k - slope_top) y = k * x + b Zw = calc_way.calc_height(x_bot[i],y_bot[i], x, y, alpha, beta) Xw, Yw = calc_way.calc_distance(x_bot[i],y_bot[i], alpha, beta) # 3. 读取图像 image = cv2.imread(img_path) # 检查图像是否成功加载 if image is None: print(f"错误: 无法读取图像 {img_path}") exit() # 计算直线上的两个点(x=0 和 x=图像宽度) # x1 = 0 # y1 = 960 - int(slope_top * x1 + intercept_top) # 计算 y1 # # x2 = int(x_top[-1]) # 图像宽度 # y2 = 960 - int(slope_top * x2 + intercept_top) # 计算 y2 # # # 绘制直线(BGR 颜色:(0, 255, 0) 绿色,线宽 2) # cv2.line(image, (x1, y1), (x2, y2), (0, 255, 0), 1) # # x1 = 0 # y1 = 960 - int(slope_bot * x1 + intercept_bot) # 计算 y1 # # x2 = int(x_bot[-1]) # 图像宽度 # y2 = 960 - int(slope_bot * x2 + intercept_bot) # 计算 y2 # # # 绘制直线(BGR 颜色:(0, 255, 0) 绿色,线宽 2) # cv2.line(image, (x1, y1), (x2, y2), (0, 255, 0), 1) cv2.line(image, (int(x_bot[i]), 960 - int(y_bot[i])), (int(x), 960 - int(y)), (0, 0, 255), 2) cv2.putText(image, f"Xw = {int(Xw)},Yw = {int(Yw)},Zw = {int(Zw)}", (640, 200), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), 2) cv2.putText(image, f"x = {x_bot[i]}, y = {y_bot[i]}", (int(x_bot[i]), 960 - int(y_bot[i])), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), 2) filename = f"{i}.jpg" output_path = os.path.join(output_folder, filename) cv2.imwrite(output_path, image) # t = time.time() # result = vs_measurement(r"C:\Users\Administrator\Desktop\BYD\0718\new428.75662880363143.txt", position=500) # print(result) # vs_measurement_pic(r"C:\Users\Administrator\Desktop\BYD\0718\new428.75662880363143.txt",r"C:\Users\Administrator\Desktop\BYD\0718\new428.75662880363143.jpg",r"C:\Users\Administrator\Desktop\BYD\0718\new428.75662880363143") # print(f"time: {time.time() - t} folder_path = r"C:\Users\Administrator\Desktop\BYD\7.16\0716" txt_files = glob.glob(os.path.join(folder_path, '*.txt')) for file_path in txt_files: with open(file_path, 'r', encoding='utf-8') as file: print(file_path) result = vs_measurement(file_path, position=784) print(result)