|
|
|
@ -0,0 +1,150 @@
|
|
|
|
|
import numpy as np
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import calc_way
|
|
|
|
|
from scipy import stats
|
|
|
|
|
import calc_slope_line
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
import model
|
|
|
|
|
import os
|
|
|
|
|
# 数据截断线
|
|
|
|
|
model = model.Model()
|
|
|
|
|
limit_slope = model.limit_slope
|
|
|
|
|
limit_intercept = model.limit_intercept
|
|
|
|
|
def grid_downsample(points, cell_size=15):
|
|
|
|
|
"""网格化降采样,保持空间结构"""
|
|
|
|
|
df = pd.DataFrame(points, columns=['x', 'y'])
|
|
|
|
|
df['x_grid'] = (df['x'] // cell_size) * cell_size
|
|
|
|
|
df['y_grid'] = (df['y'] // cell_size) * cell_size
|
|
|
|
|
sampled = df.groupby(['x_grid', 'y_grid']).first().reset_index()
|
|
|
|
|
return sampled[['x', 'y']].values
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
读取yolo网络识别路沿的坐标数据,筛选出目标区域的数据点,并将路沿上下侧数据分离
|
|
|
|
|
参数:保存数据的txt文件路径
|
|
|
|
|
返回值:在目标区域内的下侧数据点坐标x_bot、y_bot,上侧数据点坐标x_top,y_top
|
|
|
|
|
"""
|
|
|
|
|
def get_data(txt_name):
|
|
|
|
|
# 加载数据
|
|
|
|
|
data = np.loadtxt(txt_name)
|
|
|
|
|
int_data = data.astype(int)
|
|
|
|
|
|
|
|
|
|
# 网格化降采样
|
|
|
|
|
grid_sampled = grid_downsample(int_data, cell_size=20)
|
|
|
|
|
|
|
|
|
|
# 数据截断
|
|
|
|
|
x = []
|
|
|
|
|
y = []
|
|
|
|
|
for i in range(grid_sampled.shape[0]):
|
|
|
|
|
grid_sampled[i][1] = 960 - int(grid_sampled[i][1])
|
|
|
|
|
if limit_slope * int(grid_sampled[i][0]) + limit_intercept - int(grid_sampled[i][1]) < 0:
|
|
|
|
|
continue
|
|
|
|
|
x.append(int(grid_sampled[i][0]))
|
|
|
|
|
y.append(int(grid_sampled[i][1]))
|
|
|
|
|
x = np.array(x)
|
|
|
|
|
y = np.array(y)
|
|
|
|
|
|
|
|
|
|
# 原始数据粗分类
|
|
|
|
|
slope, intercept, r_2 = calc_slope_line.linear_regression(x, y)
|
|
|
|
|
y_pred = slope * x + intercept
|
|
|
|
|
x_bot = []
|
|
|
|
|
y_bot = []
|
|
|
|
|
x_top = []
|
|
|
|
|
y_top = []
|
|
|
|
|
for i in range(len(x)):
|
|
|
|
|
if x[i] * slope + intercept - y[i] > 0:
|
|
|
|
|
x_bot.append(x[i])
|
|
|
|
|
y_bot.append(y[i])
|
|
|
|
|
else:
|
|
|
|
|
x_top.append(x[i])
|
|
|
|
|
y_top.append(y[i])
|
|
|
|
|
x_bot = np.array(x_bot)
|
|
|
|
|
y_bot = np.array(y_bot)
|
|
|
|
|
x_top = np.array(x_top)
|
|
|
|
|
y_top = np.array(y_top)
|
|
|
|
|
slope_bot, intercept_bot, r2_bot = calc_slope_line.linear_regression(x_bot, y_bot)
|
|
|
|
|
slope_top, intercept_top, r2_top = calc_slope_line.linear_regression(x_top, y_top)
|
|
|
|
|
print(f"未清洗数据拟合上下沿:r2_bot = {r2_bot},r2_top = {r2_top}")
|
|
|
|
|
|
|
|
|
|
# 第一次数据清洗,消除误识别点
|
|
|
|
|
# 计算残差
|
|
|
|
|
residuals = y - y_pred
|
|
|
|
|
# 计算残差的标准差 (MSE的平方根)
|
|
|
|
|
residual_std = np.sqrt(np.sum(residuals ** 2) / (len(x) - 2))
|
|
|
|
|
standardized_residuals = residuals / residual_std
|
|
|
|
|
# 设置阈值 (常用 2.5-3.0 个标准差)
|
|
|
|
|
threshold = 2.0
|
|
|
|
|
# 标记异常点
|
|
|
|
|
outlier_mask = np.abs(standardized_residuals) > threshold
|
|
|
|
|
outliers_x = x[outlier_mask]
|
|
|
|
|
outliers_y = y[outlier_mask]
|
|
|
|
|
print(f"第一次数据清洗发现 {np.sum(outlier_mask)} 个异常点:")
|
|
|
|
|
for i, (x_val, y_val) in enumerate(zip(outliers_x, outliers_y)):
|
|
|
|
|
print(f"点 {i + 1}: x={x_val}, y={y_val}, 残差={residuals[outlier_mask][i]:.2f}")
|
|
|
|
|
# 剔除异常点
|
|
|
|
|
clean_x = x[~outlier_mask]
|
|
|
|
|
clean_y = y[~outlier_mask]
|
|
|
|
|
clean_slope, clean_intercept, clean_r_2 = calc_slope_line.linear_regression(clean_x, clean_y)
|
|
|
|
|
print(f"清洗数据后整体拟合参数r_2 = {r_2}")
|
|
|
|
|
|
|
|
|
|
# 第一次数据清洗后的数据再分类
|
|
|
|
|
x_bot_clean = []
|
|
|
|
|
y_bot_clean = []
|
|
|
|
|
x_top_clean = []
|
|
|
|
|
y_top_clean = []
|
|
|
|
|
for i in range(len(clean_x)):
|
|
|
|
|
if clean_x[i] * clean_slope + clean_intercept - clean_y[i] > 0:
|
|
|
|
|
x_bot_clean.append(clean_x[i])
|
|
|
|
|
y_bot_clean.append(clean_y[i])
|
|
|
|
|
else:
|
|
|
|
|
x_top_clean.append(clean_x[i])
|
|
|
|
|
y_top_clean.append(clean_y[i])
|
|
|
|
|
x_bot_clean = np.array(x_bot_clean)
|
|
|
|
|
y_bot_clean = np.array(y_bot_clean)
|
|
|
|
|
x_top_clean = np.array(x_top_clean)
|
|
|
|
|
y_top_clean = np.array(y_top_clean)
|
|
|
|
|
|
|
|
|
|
# 第二次数据清洗,消除误分类点
|
|
|
|
|
clean_slope_bot, clean_intercept_bot, clean_r2_bot = calc_slope_line.linear_regression(x_bot_clean, y_bot_clean)
|
|
|
|
|
clean_slope_top, clean_intercept_top, clean_r2_top = calc_slope_line.linear_regression(x_top_clean, y_top_clean)
|
|
|
|
|
print(f"清洗数据后上下沿拟合参数clean_r2_bot = {clean_r2_bot},clean_r2_top = {clean_r2_top}")
|
|
|
|
|
# 绘制拟合线
|
|
|
|
|
y_bot_pred = clean_slope_bot * x_bot_clean + clean_intercept_bot
|
|
|
|
|
y_top_pred = clean_slope_top * x_top_clean + clean_intercept_top
|
|
|
|
|
# 计算残差
|
|
|
|
|
residuals_bot = y_bot_clean - y_bot_pred
|
|
|
|
|
residuals_top = y_top_clean - y_top_pred
|
|
|
|
|
# 计算残差的标准差 (MSE的平方根)
|
|
|
|
|
residual_std_bot = np.sqrt(np.sum(residuals_bot ** 2) / (len(x_bot_clean) - 2))
|
|
|
|
|
residual_std_top = np.sqrt(np.sum(residuals_top ** 2) / (len(x_top_clean) - 2))
|
|
|
|
|
# 计算标准化残差 (Z-score)
|
|
|
|
|
standardized_residuals_bot = residuals_bot / residual_std_bot
|
|
|
|
|
standardized_residuals_top = residuals_top / residual_std_top
|
|
|
|
|
# 设置阈值 (常用 2.5-3.0 个标准差)
|
|
|
|
|
threshold = 1.0
|
|
|
|
|
# 标记异常点
|
|
|
|
|
outlier_mask_bot = np.abs(standardized_residuals_bot) > threshold
|
|
|
|
|
outlier_mask_top = np.abs(standardized_residuals_top) > threshold
|
|
|
|
|
outliers_x_bot = x_bot_clean[outlier_mask_bot]
|
|
|
|
|
outliers_y_bot = y_bot_clean[outlier_mask_bot]
|
|
|
|
|
outliers_x_top = x_top_clean[outlier_mask_top]
|
|
|
|
|
outliers_y_top = y_top_clean[outlier_mask_top]
|
|
|
|
|
print(f"第二次数据清洗下沿发现 {np.sum(outlier_mask_bot)} 个异常点:")
|
|
|
|
|
# for i, (x_val, y_val) in enumerate(zip(outliers_x_bot, outliers_y_bot)):
|
|
|
|
|
# print(f"点 {i + 1}: x={x_val}, y={y_val}, 残差={residuals_bot[outlier_mask_bot][i]:.2f}")
|
|
|
|
|
print(f"第二次数据清洗上沿发现 {np.sum(outlier_mask_top)} 个异常点:")
|
|
|
|
|
# for i, (x_val, y_val) in enumerate(zip(outliers_x_top, outliers_y_top)):
|
|
|
|
|
# print(f"点 {i + 1}: x={x_val}, y={y_val}, 残差={residuals_top[outlier_mask_top][i]:.2f}")
|
|
|
|
|
# 剔除异常点
|
|
|
|
|
x_bot_clean = x_bot_clean[~outlier_mask_bot]
|
|
|
|
|
y_bot_clean = y_bot_clean[~outlier_mask_bot]
|
|
|
|
|
x_top_clean = x_top_clean[~outlier_mask_top]
|
|
|
|
|
y_top_clean = y_top_clean[~outlier_mask_top]
|
|
|
|
|
|
|
|
|
|
# 判断数据的有效性
|
|
|
|
|
clean_slope_bot, clean_intercept_bot, clean_r2_bot = calc_slope_line.linear_regression(x_bot_clean, y_bot_clean)
|
|
|
|
|
clean_slope_top, clean_intercept_top, clean_r2_top = calc_slope_line.linear_regression(x_top_clean, y_top_clean)
|
|
|
|
|
print(f"清洗数据后上下沿拟合参数clean_r2_bot = {clean_r2_bot},clean_r2_top = {clean_r2_top}")
|
|
|
|
|
if ((1-clean_r2_bot) > 1e-3) or ((1-clean_r2_top) > 1e-3):
|
|
|
|
|
print("无效数据")
|
|
|
|
|
return 0, None, None, None, None
|
|
|
|
|
return 1, x_bot_clean, y_bot_clean, x_top_clean, y_top_clean
|