You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

175 lines
5.5 KiB

4 months ago
import numpy as np
import matplotlib.pyplot as plt
import calc_way
import get_data
import calc_slope_line
import cv2
import model
import os
model = model.Model()
alpha = model.alpha
beta = model.beta
img_path = r'C:\Users\Administrator\Desktop\BYD\20250520\frame__9600_2_yolo.jpg'
txt_name = "C:\\Users\\Administrator\\Desktop\\BYD\\20250520\\frame_9600_2.jpg_zuobiao.txt"
output_folder = 'C:\\Users\\Administrator\\Desktop\\BYD\\Visual measurement\\pic\\9600'
"""
计算图像中识别到的路沿距离车辆坐标原点的距离高度信息
参数保存数据的txt文件路径
返回值
"""
# def vs_measurement(txt_name):
#
# os.makedirs(output_folder, exist_ok=True)
# x_bot, y_bot, x_top, y_top = get_data.get_data(txt_name)
#
# x_bot = np.array(x_bot)
# y_bot = np.array(y_bot)
# x_top = np.array(x_top)
# y_top = np.array(y_top)
# slope_top, intercept_top ,r2 = calc_slope_line.linear_regression(x_top,y_top)
#
# x_zero, y_zero = calc_way.calc_zeros()
# x_zero = np.array(x_zero)
# y_zero = np.array(y_zero)
# slope_zero, intercept_zero, r2_zero = calc_slope_line.linear_regression(x_zero, y_zero)
#
# # # 绘制原始数据
# # plt.scatter(x_top,y_top, color='blue', label='orgin')
# #
# # # 绘制拟合线
# # y_pred = slope_top * x_top + intercept_top
# # plt.plot(x_top, y_pred, color='red', label='fix')
# #
# # plt.xlabel('X')
# # plt.ylabel('Y')
# # plt.legend()
# # plt.show()
#
# Z = 0
# Y = 0
# max_Zw = 0
# max_Zw_index = 0
# min_Zw = 0
# min_Zw_index = 0
# max_Yw = 0
# max_Yw_index = 0
# min_Yw = 0
# min_Yw_index = 0
#
# for i in range(len(x_bot)):
# image = cv2.imread(img_path) # 默认读取BGR格式
# if image is None:
# print("Error: 无法读取图像,请检查路径!")
# exit()
#
# point1 = (int(x_zero[0]), int(960 - y_zero[0]))
# point2 = (int(x_zero[-1]), int(960 - y_zero[-1]))
# cv2.line(image, point1, point2, (0, 0, 255), 2)
#
# k = calc_slope_line.get_k(alpha,beta,x_bot[i],y_bot[i])
# b = calc_slope_line.get_b(x_bot[i],y_bot[i],k)
# x = (intercept_top - b) / (k - slope_top)
# y = k * x + b
# Zw = calc_way.calc_height(x_bot[i],y_bot[i], x, y, alpha, beta)
# Xw, Yw = calc_way.calc_distance(x_bot[i],y_bot[i], alpha, beta)
# if i == 0:
# max_Zw = Zw
# min_Zw = Zw
# max_Yw = Yw
# min_Yw = Yw
# else:
# if Zw > max_Zw:
# max_Zw = Zw
# max_Zw_index = i
# if Zw < min_Zw:
# min_Zw = Zw
# min_Zw_index = i
# if Yw > max_Yw:
# max_Yw = Yw
# max_Yw_index = i
# if Yw < min_Yw:
# min_Yw = Yw
# min_Yw_index = i
# point1 = (x_bot[i], 960-y_bot[i])
# point2 = (int(x), 960-int(y))
# cv2.line(image, point1, point2, (0, 255, 0), 1)
# text = f"Xw,Yw:{int(Xw),int(Yw)},Zw:{int(Zw)}"
# position = (int(x), 960-int(y))
# font = cv2.FONT_HERSHEY_SIMPLEX
# font_scale = 1.0
# color = (0, 0, 255)
# thickness = 2
# cv2.putText(image, text, position, font, font_scale, color, thickness, cv2.LINE_AA)
# output_path = os.path.join(output_folder, f'{i+1}.jpg')
# cv2.imwrite(output_path, image)
# Z = Z + Zw
# Y = Y + Yw
# file_path = os.path.join(output_folder, 'data.txt')
#
# with open(file_path, 'w', encoding='utf-8') as file:
# file.write("该图片数据如下\n")
# file.write(f"路沿平均高度为:{}\n")
# file.write(f"最大高度为图{max_Zw_index+1},高度为:{max_Zw}\n")
# file.write(f"最小高度为图{min_Zw_index+1},高度为:{min_Zw}\n")
# file.write(f"路沿距离车辆平均距离为:{-Y/len(x_bot)}\n")
# file.write(f"最远距离为图{min_Yw_index + 1},距离为:{min_Yw}\n")
# file.write(f"最近距离为图{max_Yw_index + 1},距离为:{max_Yw}\n")
def vs_measurement(txt_name):
# os.makedirs(output_folder, exist_ok=True)
x_bot, y_bot, x_top, y_top = get_data.get_data(txt_name)
x_bot = np.array(x_bot)
y_bot = np.array(y_bot)
x_top = np.array(x_top)
y_top = np.array(y_top)
slope_top, intercept_top ,r2 = calc_slope_line.linear_regression(x_top,y_top)
Z = 0
Y = 0
max_Zw = 0
max_Zw_index = 0
min_Zw = 0
min_Zw_index = 0
max_Yw = 0
max_Yw_index = 0
min_Yw = 0
min_Yw_index = 0
for i in range(len(x_bot)):
k = calc_slope_line.get_k(alpha,beta,x_bot[i],y_bot[i])
b = calc_slope_line.get_b(x_bot[i],y_bot[i],k)
x = (intercept_top - b) / (k - slope_top)
y = k * x + b
Zw = calc_way.calc_height(x_bot[i],y_bot[i], x, y, alpha, beta)
Xw, Yw = calc_way.calc_distance(x_bot[i],y_bot[i], alpha, beta)
if i == 0:
max_Zw = Zw
min_Zw = Zw
max_Yw = Yw
min_Yw = Yw
else:
if Zw > max_Zw:
max_Zw = Zw
max_Zw_index = i
if Zw < min_Zw:
min_Zw = Zw
min_Zw_index = i
if Yw > max_Yw:
max_Yw = Yw
max_Yw_index = i
if Yw < min_Yw:
min_Yw = Yw
min_Yw_index = i
Z = Z + Zw
Y = Y + Yw
return Z/len(x_bot),-max_Yw
if __name__ == '__main__':
vs_measurement(txt_name)