You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

368 lines
16 KiB

import numpy as np
import pandas as pd
import calc_way
from scipy import stats
import calc_slope_line
import matplotlib.pyplot as plt
import model
import os
# 数据截断线
model = model.Model()
limit_slope = model.limit_slope
limit_intercept = model.limit_intercept
def grid_downsample(points, cell_size=15):
"""网格化降采样,保持空间结构"""
df = pd.DataFrame(points, columns=['x', 'y'])
df['x_grid'] = (df['x'] // cell_size) * cell_size
df['y_grid'] = (df['y'] // cell_size) * cell_size
sampled = df.groupby(['x_grid', 'y_grid']).first().reset_index()
return sampled[['x', 'y']].values
"""
读取yolo网络识别路沿的坐标数据,筛选出目标区域的数据点并将路沿上下侧数据分离
参数保存数据的txt文件路径
返回值在目标区域内的下侧数据点坐标x_boty_bot上侧数据点坐标x_top,y_top
"""
def get_data(txt_name):
# 加载数据
data = np.loadtxt(txt_name)
int_data = data.astype(int)
# 网格化降采样
grid_sampled = grid_downsample(int_data, cell_size=20)
# 数据截断
x = []
y = []
for i in range(grid_sampled.shape[0]):
grid_sampled[i][1] = 960 - int(grid_sampled[i][1])
if limit_slope * int(grid_sampled[i][0]) + limit_intercept - int(grid_sampled[i][1]) < 0:
continue
x.append(int(grid_sampled[i][0]))
y.append(int(grid_sampled[i][1]))
x = np.array(x)
y = np.array(y)
# 原始数据粗分类
slope, intercept, r_2 = calc_slope_line.linear_regression(x, y)
y_pred = slope * x + intercept
x_bot = []
y_bot = []
x_top = []
y_top = []
for i in range(len(x)):
if x[i] * slope + intercept - y[i] > 0:
x_bot.append(x[i])
y_bot.append(y[i])
else:
x_top.append(x[i])
y_top.append(y[i])
x_bot = np.array(x_bot)
y_bot = np.array(y_bot)
x_top = np.array(x_top)
y_top = np.array(y_top)
slope_bot, intercept_bot, r2_bot = calc_slope_line.linear_regression(x_bot, y_bot)
slope_top, intercept_top, r2_top = calc_slope_line.linear_regression(x_top, y_top)
print(f"未清洗数据拟合上下沿r2_bot = {r2_bot},r2_top = {r2_top}")
# 第一次数据清洗,消除误识别点
# 计算残差
residuals = y - y_pred
# 计算残差的标准差 (MSE的平方根)
residual_std = np.sqrt(np.sum(residuals ** 2) / (len(x) - 2))
standardized_residuals = residuals / residual_std
# 设置阈值 (常用 2.5-3.0 个标准差)
threshold = 2.0
# 标记异常点
outlier_mask = np.abs(standardized_residuals) > threshold
outliers_x = x[outlier_mask]
outliers_y = y[outlier_mask]
print(f"第一次数据清洗发现 {np.sum(outlier_mask)} 个异常点:")
for i, (x_val, y_val) in enumerate(zip(outliers_x, outliers_y)):
print(f"{i + 1}: x={x_val}, y={y_val}, 残差={residuals[outlier_mask][i]:.2f}")
# 剔除异常点
clean_x = x[~outlier_mask]
clean_y = y[~outlier_mask]
clean_slope, clean_intercept, clean_r_2 = calc_slope_line.linear_regression(clean_x, clean_y)
print(f"清洗数据后整体拟合参数r_2 = {r_2}")
# 第一次数据清洗后的数据再分类
x_bot_clean = []
y_bot_clean = []
x_top_clean = []
y_top_clean = []
for i in range(len(clean_x)):
if clean_x[i] * clean_slope + clean_intercept - clean_y[i] > 0:
x_bot_clean.append(clean_x[i])
y_bot_clean.append(clean_y[i])
else:
x_top_clean.append(clean_x[i])
y_top_clean.append(clean_y[i])
x_bot_clean = np.array(x_bot_clean)
y_bot_clean = np.array(y_bot_clean)
x_top_clean = np.array(x_top_clean)
y_top_clean = np.array(y_top_clean)
# 第二次数据清洗,消除误分类点
clean_slope_bot, clean_intercept_bot, clean_r2_bot = calc_slope_line.linear_regression(x_bot_clean, y_bot_clean)
clean_slope_top, clean_intercept_top, clean_r2_top = calc_slope_line.linear_regression(x_top_clean, y_top_clean)
print(f"清洗数据后上下沿拟合参数clean_r2_bot = {clean_r2_bot},clean_r2_top = {clean_r2_top}")
# 绘制拟合线
y_bot_pred = clean_slope_bot * x_bot_clean + clean_intercept_bot
y_top_pred = clean_slope_top * x_top_clean + clean_intercept_top
# 计算残差
residuals_bot = y_bot_clean - y_bot_pred
residuals_top = y_top_clean - y_top_pred
# 计算残差的标准差 (MSE的平方根)
residual_std_bot = np.sqrt(np.sum(residuals_bot ** 2) / (len(x_bot_clean) - 2))
residual_std_top = np.sqrt(np.sum(residuals_top ** 2) / (len(x_top_clean) - 2))
# 计算标准化残差 (Z-score)
standardized_residuals_bot = residuals_bot / residual_std_bot
standardized_residuals_top = residuals_top / residual_std_top
# 设置阈值 (常用 2.5-3.0 个标准差)
3 months ago
threshold = 1.5
# 标记异常点
outlier_mask_bot = np.abs(standardized_residuals_bot) > threshold
outlier_mask_top = np.abs(standardized_residuals_top) > threshold
outliers_x_bot = x_bot_clean[outlier_mask_bot]
outliers_y_bot = y_bot_clean[outlier_mask_bot]
outliers_x_top = x_top_clean[outlier_mask_top]
outliers_y_top = y_top_clean[outlier_mask_top]
print(f"第二次数据清洗下沿发现 {np.sum(outlier_mask_bot)} 个异常点:")
# for i, (x_val, y_val) in enumerate(zip(outliers_x_bot, outliers_y_bot)):
# print(f"点 {i + 1}: x={x_val}, y={y_val}, 残差={residuals_bot[outlier_mask_bot][i]:.2f}")
print(f"第二次数据清洗上沿发现 {np.sum(outlier_mask_top)} 个异常点:")
# for i, (x_val, y_val) in enumerate(zip(outliers_x_top, outliers_y_top)):
# print(f"点 {i + 1}: x={x_val}, y={y_val}, 残差={residuals_top[outlier_mask_top][i]:.2f}")
# 剔除异常点
x_bot_clean = x_bot_clean[~outlier_mask_bot]
y_bot_clean = y_bot_clean[~outlier_mask_bot]
x_top_clean = x_top_clean[~outlier_mask_top]
y_top_clean = y_top_clean[~outlier_mask_top]
# 判断数据的有效性
clean_slope_bot, clean_intercept_bot, clean_r2_bot = calc_slope_line.linear_regression(x_bot_clean, y_bot_clean)
clean_slope_top, clean_intercept_top, clean_r2_top = calc_slope_line.linear_regression(x_top_clean, y_top_clean)
print(f"清洗数据后上下沿拟合参数clean_r2_bot = {clean_r2_bot},clean_r2_top = {clean_r2_top}")
3 months ago
if ((1-clean_r2_bot) > (1-0.98)) or ((1-clean_r2_top) > (1-0.98)):
print("无效数据")
return 0, None, None, None, None
return 1, x_bot_clean, y_bot_clean, x_top_clean, y_top_clean
3 months ago
def test3_get_data(txt_name):
# 加载数据
data = np.loadtxt(txt_name)
int_data = data.astype(int)
grid_sampled = grid_downsample(int_data, cell_size=20)
x = []
y = []
for i in range(grid_sampled.shape[0]):
grid_sampled[i][1] = 960 - int(grid_sampled[i][1])
if limit_slope * int(grid_sampled[i][0]) + limit_intercept - int(grid_sampled[i][1]) < 0:
continue
x.append(int(grid_sampled[i][0]))
y.append(int(grid_sampled[i][1]))
x = np.array(x)
y = np.array(y)
# with open(txt_name, 'r', encoding='utf-8') as f:
# lines = f.readlines()
# data = []
# for i, line in enumerate(lines, 1):
# data.append(line.split())
# print(data)
# if not data:
# return 0, None, None, None, None
# x = []
# y = []
#
# for i in range(len(data)):
# data[i][1] = 960 - int(data[i][1])
# if limit_slope * int(data[i][0]) + limit_intercept - int(data[i][1]) < 0:
# continue
# x.append(int(data[i][0]))
# y.append(int(data[i][1]))
# x = np.array(x)
# y = np.array(y)
slope, intercept, r_2 = calc_slope_line.linear_regression(x, y)
print(f"原始数据拟合参数r_2 = {r_2}" )
fig1, axes1 = plt.subplots(nrows=4, ncols=3, figsize=(10, 8))
fig1.tight_layout()
fig1.suptitle(f"{txt_name}")
axes1[0, 0].set_title("original data")
axes1[0, 0].scatter(x,y, color='blue', label='orgin')
# 绘制拟合线
y_pred = slope * x + intercept
axes1[0, 0].plot(x, y_pred, color='red', label='fix')
# for i in range(len(x)):
x_bot = []
y_bot = []
x_top = []
y_top = []
for i in range(len(x)):
if x[i] * slope + intercept - y[i] > 0:
x_bot.append(x[i])
y_bot.append(y[i])
else:
x_top.append(x[i])
y_top.append(y[i])
x_bot = np.array(x_bot)
y_bot = np.array(y_bot)
x_top = np.array(x_top)
y_top = np.array(y_top)
slope_bot, intercept_bot, r2_bot = calc_slope_line.linear_regression(x_bot, y_bot)
slope_top, intercept_top, r2_top = calc_slope_line.linear_regression(x_top, y_top)
print(f"未清洗数据拟合上下沿r2_bot = {r2_bot},r2_top = {r2_top}")
axes1[0, 1].set_title("original bot data")
axes1[0, 1].scatter(x_bot, y_bot, color='blue', label='orgin')
# 绘制拟合线
y_bot_pred = slope_bot * x_bot + intercept_bot
axes1[0, 1].plot(x_bot, y_bot_pred, color='red', label='fix')
axes1[0, 2].set_title("original top data")
axes1[0, 2].scatter(x_top, y_top, color='blue', label='orgin')
# 绘制拟合线
y_top_pred = slope_top * x_top + intercept_top
axes1[0, 2].plot(x_top, y_top_pred, color='red', label='fix')
# 计算残差
residuals = y - y_pred
# print(f"residuals = {residuals}")
# 计算残差的标准差 (MSE的平方根)
residual_std = np.sqrt(np.sum(residuals ** 2) / (len(x) - 2))
print(f"residual_std = {residual_std}")
# 计算标准化残差 (Z-score)
standardized_residuals = residuals / residual_std
for i in range(len(standardized_residuals)):
print(f"{i+1}个点的坐标为:{x[i],y[i]},标准化残差为{standardized_residuals[i]}\n")
# print(f"standardized_residuals = {standardized_residuals}")
# 设置阈值 (常用 2.5-3.0 个标准差)
threshold = 2.0
# 标记异常点
outlier_mask = np.abs(standardized_residuals) > threshold
# print(f"outlier_mask = {outlier_mask}")
outliers_x = x[outlier_mask]
outliers_y = y[outlier_mask]
axes1[2, 0].set_title("abnormal data")
axes1[2, 0].scatter(outliers_x, outliers_y, color='blue', label='orgin')
print(f"发现 {np.sum(outlier_mask)} 个异常点:")
# for i, (x_val, y_val) in enumerate(zip(outliers_x, outliers_y)):
# print(f"点 {i + 1}: x={x_val}, y={y_val}, 残差={residuals[outlier_mask][i]:.2f}")
# 剔除异常点
clean_x = x[~outlier_mask]
clean_y = y[~outlier_mask]
clean_slope, clean_intercept, clean_r_2 = calc_slope_line.linear_regression(clean_x, clean_y)
print(f"清洗数据后整体拟合参数r_2 = {r_2}")
axes1[1, 0].set_title("clean data")
axes1[1, 0].scatter(clean_x,clean_y , color='blue', label='orgin')
# 绘制拟合线
y_pred = clean_slope * clean_x + clean_intercept
axes1[1, 0].plot(clean_x, y_pred, color='red', label='fix')
x_bot_clean = []
y_bot_clean = []
x_top_clean = []
y_top_clean = []
for i in range(len(clean_x)):
if clean_x[i] * clean_slope + clean_intercept - clean_y[i] > 0:
x_bot_clean.append(clean_x[i])
y_bot_clean.append(clean_y[i])
else:
x_top_clean.append(clean_x[i])
y_top_clean.append(clean_y[i])
x_bot_clean = np.array(x_bot_clean)
y_bot_clean = np.array(y_bot_clean)
x_top_clean = np.array(x_top_clean)
y_top_clean = np.array(y_top_clean)
clean_slope_bot, clean_intercept_bot, clean_r2_bot = calc_slope_line.linear_regression(x_bot_clean, y_bot_clean)
clean_slope_top, clean_intercept_top, clean_r2_top = calc_slope_line.linear_regression(x_top_clean, y_top_clean)
print(f"清洗数据后上下沿拟合参数clean_r2_bot = {clean_r2_bot},clean_r2_top = {clean_r2_top}")
axes1[1, 1].set_title("clean bot data")
axes1[1, 1].scatter(x_bot_clean, y_bot_clean, color='blue', label='orgin')
# 绘制拟合线
y_bot_pred = clean_slope_bot * x_bot_clean + clean_intercept_bot
axes1[1, 1].plot(x_bot_clean, y_bot_pred, color='red', label='fix')
axes1[1, 2].set_title("clean top data")
axes1[1, 2].scatter(x_top_clean, y_top_clean, color='blue', label='orgin')
# 绘制拟合线
y_top_pred = clean_slope_top * x_top_clean + clean_intercept_top
axes1[1, 2].plot(x_top_clean, y_top_pred, color='red', label='fix')
residuals_bot = y_bot_clean - y_bot_pred
residuals_top = y_top_clean - y_top_pred
residual_std_bot = np.sqrt(np.sum(residuals_bot ** 2) / (len(x_bot_clean) - 2))
residual_std_top = np.sqrt(np.sum(residuals_top ** 2) / (len(x_top_clean) - 2))
print(f"residual_std_bot = {residual_std_bot}")
print(f"residual_std_top = {residual_std_top}")
# 计算标准化残差 (Z-score)
standardized_residuals_bot = residuals_bot / residual_std_bot
standardized_residuals_top = residuals_top / residual_std_top
# print(f"standardized_residuals_bot = {standardized_residuals_bot}")
# print(f"standardized_residuals_top = {standardized_residuals_top}")
# 设置阈值 (常用 2.5-3.0 个标准差)
threshold = 2.0
# 标记异常点
outlier_mask_bot = np.abs(standardized_residuals_bot) > threshold
outlier_mask_top = np.abs(standardized_residuals_top) > threshold
# print(f"outlier_mask = {outlier_mask}")
outliers_x_bot = x_bot_clean[outlier_mask_bot]
outliers_y_bot = y_bot_clean[outlier_mask_bot]
outliers_x_top = x_top_clean[outlier_mask_top]
outliers_y_top = y_top_clean[outlier_mask_top]
axes1[2, 1].set_title("re clean abnormal bot data")
axes1[2, 1].scatter(outliers_x_bot, outliers_y_bot, color='blue', label='delet_bot')
axes1[2, 2].set_title("re clean abnormal top data")
axes1[2, 2].scatter(outliers_x_top, outliers_y_top, color='blue', label='delet_top')
print(f"发现 {np.sum(outlier_mask_bot)} 个异常点:")
# for i, (x_val, y_val) in enumerate(zip(outliers_x_bot, outliers_y_bot)):
# print(f"点 {i + 1}: x={x_val}, y={y_val}, 残差={residuals_bot[outlier_mask_bot][i]:.2f}")
print(f"发现 {np.sum(outlier_mask_top)} 个异常点:")
# for i, (x_val, y_val) in enumerate(zip(outliers_x_top, outliers_y_top)):
# print(f"点 {i + 1}: x={x_val}, y={y_val}, 残差={residuals_top[outlier_mask_top][i]:.2f}")
# 剔除异常点
x_bot_clean = x_bot_clean[~outlier_mask_bot]
y_bot_clean = y_bot_clean[~outlier_mask_bot]
x_top_clean = x_top_clean[~outlier_mask_top]
y_top_clean = y_top_clean[~outlier_mask_top]
clean_slope_bot, clean_intercept_bot, clean_r2_bot = calc_slope_line.linear_regression(x_bot_clean, y_bot_clean)
clean_slope_top, clean_intercept_top, clean_r2_top = calc_slope_line.linear_regression(x_top_clean, y_top_clean)
print(f"清洗数据后上下沿拟合参数clean_r2_bot = {clean_r2_bot},clean_r2_top = {clean_r2_top}")
axes1[3, 1].set_title("re clean bot data")
axes1[3, 1].scatter(x_bot_clean, y_bot_clean, color='blue', label='orgin')
# 绘制拟合线
y_bot_pred = clean_slope_bot * x_bot_clean + clean_intercept_bot
axes1[3, 1].plot(x_bot_clean, y_bot_pred, color='red', label='fix')
axes1[3, 2].set_title("re clean top data")
axes1[3, 2].scatter(x_top_clean, y_top_clean, color='blue', label='orgin')
# 绘制拟合线
y_top_pred = clean_slope_top * x_top_clean + clean_intercept_top
axes1[3, 2].plot(x_top_clean, y_top_pred, color='red', label='fix')
plt.show()
# plt.savefig("my_plot.png")
# file_base = os.path.splitext(txt_name)[0] # 去掉扩展名
# output_file = f"{file_base}_plot.png"
# plt.savefig(output_file)
if ((1-clean_r2_bot) > 1e-3) or ((1-clean_r2_top) > 1e-3):
print("无效数据")
return 0, None, None, None, None
return 1, x_bot_clean, y_bot_clean, x_top_clean, y_top_clean