|
|
|
|
import math
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
import calc_way
|
|
|
|
|
import get_data
|
|
|
|
|
import calc_slope_line
|
|
|
|
|
import cv2
|
|
|
|
|
import model
|
|
|
|
|
import os
|
|
|
|
|
# model = model.Model()
|
|
|
|
|
# x,y=calc_way.calc_distance(model.tire_x, model.tire_y,model.alpha,model.beta)
|
|
|
|
|
# print(x,y)
|
|
|
|
|
# img_path = r'C:\Users\Administrator\Desktop\BYD\20250520\frame_7800_2_yolo.jpg'
|
|
|
|
|
# x_zero, y_zero = calc_way.calc_zeros_xto0()
|
|
|
|
|
# x_zero = np.array(x_zero)
|
|
|
|
|
# y_zero = np.array(y_zero)
|
|
|
|
|
# print(x_zero,y_zero)
|
|
|
|
|
# image = cv2.imread(img_path) # 默认读取BGR格式
|
|
|
|
|
# point1 = (int(x_zero[0]), int(960 - y_zero[0]))
|
|
|
|
|
# point2 = (int(x_zero[-1]), int(960 - y_zero[-1]))
|
|
|
|
|
# cv2.line(image, point1, point2, (0, 0, 255), 2)
|
|
|
|
|
# cv2.imshow("Image with Line", image)
|
|
|
|
|
# cv2.waitKey(0) # 按任意键关闭窗口
|
|
|
|
|
# cv2.destroyAllWindows()
|
|
|
|
|
|
|
|
|
|
model = model.Model()
|
|
|
|
|
alpha = model.alpha
|
|
|
|
|
beta = model.beta
|
|
|
|
|
|
|
|
|
|
img_path = r'C:\Users\Administrator\Desktop\BYD\20250520\frame_7800_2_yolo.jpg'
|
|
|
|
|
txt_name = "C:\\Users\\Administrator\\Desktop\\BYD\\20250520\\frame_7800_2.jpg_zuobiao.txt"
|
|
|
|
|
output_folder = 'C:\\Users\\Administrator\\Desktop\\BYD\\Visual measurement\\pic\\7800'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def vs_measurement(txt_name):
|
|
|
|
|
os.makedirs(output_folder, exist_ok=True)
|
|
|
|
|
# 获取数据
|
|
|
|
|
x_bot, y_bot, x_top, y_top = get_data.get_data(txt_name)
|
|
|
|
|
x_bot = np.array(x_bot)
|
|
|
|
|
y_bot = np.array(y_bot)
|
|
|
|
|
x_top = np.array(x_top)
|
|
|
|
|
y_top = np.array(y_top)
|
|
|
|
|
|
|
|
|
|
# 拟合路沿上下直线方程
|
|
|
|
|
slope_bot, intercept_bot ,r2_bot = calc_slope_line.linear_regression(x_bot, y_bot)
|
|
|
|
|
slope_top, intercept_top ,r2_top = calc_slope_line.linear_regression(x_top,y_top)
|
|
|
|
|
|
|
|
|
|
# 拟合车轮垂线方程
|
|
|
|
|
x_zero_xto0, y_zero_xto0 = calc_way.calc_zeros_xto0()
|
|
|
|
|
x_zero_xto0 = np.array(x_zero_xto0)
|
|
|
|
|
y_zero_xto0 = np.array(y_zero_xto0)
|
|
|
|
|
slope_zero_xto0, intercept_zero_xto0,r2_zero_xto0 = calc_slope_line.linear_regression(x_zero_xto0, y_zero_xto0)
|
|
|
|
|
|
|
|
|
|
# 拟合X轴线方程
|
|
|
|
|
x_zero, y_zero = calc_way.calc_zeros_yto0()
|
|
|
|
|
x_zero = np.array(x_zero)
|
|
|
|
|
y_zero = np.array(y_zero)
|
|
|
|
|
print(x_zero,y_zero)
|
|
|
|
|
slope_zero, intercept_zero, r2_zero = calc_slope_line.linear_regression(x_zero, y_zero)
|
|
|
|
|
|
|
|
|
|
# 计算路沿底部与车轮垂线得交点
|
|
|
|
|
x_jiao, y_jiao =calc_slope_line.find_intersection((slope_bot,-1,intercept_bot),(slope_zero_xto0,-1,intercept_zero_xto0))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# # 绘制原始数据
|
|
|
|
|
# plt.scatter(x_top,y_top, color='blue', label='orgin')
|
|
|
|
|
#
|
|
|
|
|
# # 绘制拟合线
|
|
|
|
|
# y_pred = slope_top * x_top + intercept_top
|
|
|
|
|
# plt.plot(x_top, y_pred, color='red', label='fix')
|
|
|
|
|
#
|
|
|
|
|
# plt.xlabel('X')
|
|
|
|
|
# plt.ylabel('Y')
|
|
|
|
|
# plt.legend()
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
|
|
Z = 0
|
|
|
|
|
Y = 0
|
|
|
|
|
max_Zw = 0
|
|
|
|
|
max_Zw_index = 0
|
|
|
|
|
min_Zw = 0
|
|
|
|
|
min_Zw_index = 0
|
|
|
|
|
max_Yw = 0
|
|
|
|
|
max_Yw_index = 0
|
|
|
|
|
min_Yw = 0
|
|
|
|
|
min_Yw_index = 0
|
|
|
|
|
Xw_bot = []
|
|
|
|
|
Yw_bot = []
|
|
|
|
|
|
|
|
|
|
for i in range(len(x_bot)):
|
|
|
|
|
image = cv2.imread(img_path) # 默认读取BGR格式
|
|
|
|
|
if image is None:
|
|
|
|
|
print("Error: 无法读取图像,请检查路径!")
|
|
|
|
|
exit()
|
|
|
|
|
|
|
|
|
|
# 定义点的坐标 (x, y)
|
|
|
|
|
point = (int(x_jiao), 960-int(y_jiao))
|
|
|
|
|
|
|
|
|
|
# 画一个红色圆点(半径5,颜色BGR格式,线宽-1表示填充)
|
|
|
|
|
cv2.circle(image, point, 5, (0, 0, 255), -1)
|
|
|
|
|
|
|
|
|
|
point1 = (int(x_zero[0]), int(960 - y_zero[0]))
|
|
|
|
|
point2 = (int(x_zero[-1]), int(960 - y_zero[-1]))
|
|
|
|
|
cv2.line(image, point1, point2, (0, 0, 255), 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
point1 = (int(x_zero_xto0[0]), int(960 - y_zero_xto0[0]))
|
|
|
|
|
point2 = (int(x_zero_xto0[-1]), int(960 - y_zero_xto0[-1]))
|
|
|
|
|
cv2.line(image, point1, point2, (0, 255, 255), 2)
|
|
|
|
|
|
|
|
|
|
k = calc_slope_line.get_k(alpha,beta,x_bot[i],y_bot[i])
|
|
|
|
|
b = calc_slope_line.get_b(x_bot[i],y_bot[i],k)
|
|
|
|
|
x = (intercept_top - b) / (k - slope_top)
|
|
|
|
|
y = k * x + b
|
|
|
|
|
Zw = calc_way.calc_height(x_bot[i],y_bot[i], x, y, alpha, beta)
|
|
|
|
|
Xw, Yw = calc_way.calc_distance(x_bot[i],y_bot[i], alpha, beta)
|
|
|
|
|
Xw_bot.append(Xw)
|
|
|
|
|
Yw_bot.append(Yw)
|
|
|
|
|
if i == 0:
|
|
|
|
|
max_Zw = Zw
|
|
|
|
|
min_Zw = Zw
|
|
|
|
|
max_Yw = Yw
|
|
|
|
|
min_Yw = Yw
|
|
|
|
|
else:
|
|
|
|
|
if Zw > max_Zw:
|
|
|
|
|
max_Zw = Zw
|
|
|
|
|
max_Zw_index = i
|
|
|
|
|
if Zw < min_Zw:
|
|
|
|
|
min_Zw = Zw
|
|
|
|
|
min_Zw_index = i
|
|
|
|
|
if Yw > max_Yw:
|
|
|
|
|
max_Yw = Yw
|
|
|
|
|
max_Yw_index = i
|
|
|
|
|
if Yw < min_Yw:
|
|
|
|
|
min_Yw = Yw
|
|
|
|
|
min_Yw_index = i
|
|
|
|
|
point1 = (x_bot[i], 960-y_bot[i])
|
|
|
|
|
point2 = (int(x), 960-int(y))
|
|
|
|
|
cv2.line(image, point1, point2, (0, 255, 0), 1)
|
|
|
|
|
text = f"Xw,Yw:{int(Xw),int(Yw)},Zw:{int(Zw)}"
|
|
|
|
|
position = (int(x), 960-int(y))
|
|
|
|
|
font = cv2.FONT_HERSHEY_SIMPLEX
|
|
|
|
|
font_scale = 1
|
|
|
|
|
color = (0, 0, 255)
|
|
|
|
|
thickness = 2
|
|
|
|
|
cv2.putText(image, text, position, font, font_scale, color, thickness, cv2.LINE_AA)
|
|
|
|
|
output_path = os.path.join(output_folder, f'{i+1}.jpg')
|
|
|
|
|
cv2.imwrite(output_path, image)
|
|
|
|
|
Z = Z + Zw
|
|
|
|
|
Y = Y + Yw
|
|
|
|
|
file_path = os.path.join(output_folder, 'data.txt')
|
|
|
|
|
|
|
|
|
|
with open(file_path, 'w', encoding='utf-8') as file:
|
|
|
|
|
file.write("该图片数据如下\n")
|
|
|
|
|
file.write(f"路沿平均高度为:{Z/len(x_bot)}\n")
|
|
|
|
|
file.write(f"最大高度为图{max_Zw_index+1},高度为:{max_Zw}\n")
|
|
|
|
|
file.write(f"最小高度为图{min_Zw_index+1},高度为:{min_Zw}\n")
|
|
|
|
|
file.write(f"路沿距离车辆平均距离为:{-Y/len(x_bot)}\n")
|
|
|
|
|
file.write(f"最远距离为图{min_Yw_index + 1},距离为:{min_Yw}\n")
|
|
|
|
|
file.write(f"最近距离为图{max_Yw_index + 1},距离为:{max_Yw}\n")
|
|
|
|
|
# 计算路沿与车的夹角
|
|
|
|
|
slope_Xw ,intercept_Xw ,r2_Xw = calc_slope_line.linear_regression(Xw_bot, Yw_bot)
|
|
|
|
|
angle = math.atan(slope_Xw)
|
|
|
|
|
Xw , Yw = calc_way.calc_distance(x_jiao, y_jiao, alpha, beta)
|
|
|
|
|
distance = -Yw * math.cos(angle)
|
|
|
|
|
distance_door = (-intercept_Xw/slope_Xw)/ ((-intercept_Xw/slope_Xw)-Xw)*distance
|
|
|
|
|
|
|
|
|
|
image = cv2.imread(img_path) # 默认读取BGR格式
|
|
|
|
|
if image is None:
|
|
|
|
|
print("Error: 无法读取图像,请检查路径!")
|
|
|
|
|
exit()
|
|
|
|
|
|
|
|
|
|
cv2.circle(image, point, 5, (0, 0, 255), -1)
|
|
|
|
|
text = f"Xw,Yw:{int(Xw), int(Yw)},distance:{int(distance)},distance_door:{int(distance_door)}"
|
|
|
|
|
position = (int(x_jiao), 960 - int(y_jiao))
|
|
|
|
|
font = cv2.FONT_HERSHEY_SIMPLEX
|
|
|
|
|
font_scale = 0.5
|
|
|
|
|
color = (0, 0, 255)
|
|
|
|
|
thickness = 2
|
|
|
|
|
cv2.putText(image, text, position, font, font_scale, color, thickness, cv2.LINE_AA)
|
|
|
|
|
cv2.imshow("Image with Line", image)
|
|
|
|
|
cv2.waitKey(0) # 按任意键关闭窗口
|
|
|
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
|
|
|
|
vs_measurement(txt_name)
|