You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

186 lines
6.6 KiB

4 months ago
import math
import numpy as np
import matplotlib.pyplot as plt
import calc_way
import get_data
import calc_slope_line
import cv2
import model
import os
# model = model.Model()
# x,y=calc_way.calc_distance(model.tire_x, model.tire_y,model.alpha,model.beta)
# print(x,y)
# img_path = r'C:\Users\Administrator\Desktop\BYD\20250520\frame_7800_2_yolo.jpg'
# x_zero, y_zero = calc_way.calc_zeros_xto0()
# x_zero = np.array(x_zero)
# y_zero = np.array(y_zero)
# print(x_zero,y_zero)
# image = cv2.imread(img_path) # 默认读取BGR格式
# point1 = (int(x_zero[0]), int(960 - y_zero[0]))
# point2 = (int(x_zero[-1]), int(960 - y_zero[-1]))
# cv2.line(image, point1, point2, (0, 0, 255), 2)
# cv2.imshow("Image with Line", image)
# cv2.waitKey(0) # 按任意键关闭窗口
# cv2.destroyAllWindows()
model = model.Model()
alpha = model.alpha
beta = model.beta
img_path = r'C:\Users\Administrator\Desktop\BYD\20250520\frame_7800_2_yolo.jpg'
txt_name = "C:\\Users\\Administrator\\Desktop\\BYD\\20250520\\frame_7800_2.jpg_zuobiao.txt"
output_folder = 'C:\\Users\\Administrator\\Desktop\\BYD\\Visual measurement\\pic\\7800'
def vs_measurement(txt_name):
os.makedirs(output_folder, exist_ok=True)
# 获取数据
x_bot, y_bot, x_top, y_top = get_data.get_data(txt_name)
x_bot = np.array(x_bot)
y_bot = np.array(y_bot)
x_top = np.array(x_top)
y_top = np.array(y_top)
# 拟合路沿上下直线方程
slope_bot, intercept_bot ,r2_bot = calc_slope_line.linear_regression(x_bot, y_bot)
slope_top, intercept_top ,r2_top = calc_slope_line.linear_regression(x_top,y_top)
# 拟合车轮垂线方程
x_zero_xto0, y_zero_xto0 = calc_way.calc_zeros_xto0()
x_zero_xto0 = np.array(x_zero_xto0)
y_zero_xto0 = np.array(y_zero_xto0)
slope_zero_xto0, intercept_zero_xto0,r2_zero_xto0 = calc_slope_line.linear_regression(x_zero_xto0, y_zero_xto0)
# 拟合X轴线方程
x_zero, y_zero = calc_way.calc_zeros_yto0()
x_zero = np.array(x_zero)
y_zero = np.array(y_zero)
print(x_zero,y_zero)
slope_zero, intercept_zero, r2_zero = calc_slope_line.linear_regression(x_zero, y_zero)
# 计算路沿底部与车轮垂线得交点
x_jiao, y_jiao =calc_slope_line.find_intersection((slope_bot,-1,intercept_bot),(slope_zero_xto0,-1,intercept_zero_xto0))
# # 绘制原始数据
# plt.scatter(x_top,y_top, color='blue', label='orgin')
#
# # 绘制拟合线
# y_pred = slope_top * x_top + intercept_top
# plt.plot(x_top, y_pred, color='red', label='fix')
#
# plt.xlabel('X')
# plt.ylabel('Y')
# plt.legend()
# plt.show()
Z = 0
Y = 0
max_Zw = 0
max_Zw_index = 0
min_Zw = 0
min_Zw_index = 0
max_Yw = 0
max_Yw_index = 0
min_Yw = 0
min_Yw_index = 0
Xw_bot = []
Yw_bot = []
for i in range(len(x_bot)):
image = cv2.imread(img_path) # 默认读取BGR格式
if image is None:
print("Error: 无法读取图像,请检查路径!")
exit()
# 定义点的坐标 (x, y)
point = (int(x_jiao), 960-int(y_jiao))
# 画一个红色圆点半径5颜色BGR格式线宽-1表示填充
cv2.circle(image, point, 5, (0, 0, 255), -1)
point1 = (int(x_zero[0]), int(960 - y_zero[0]))
point2 = (int(x_zero[-1]), int(960 - y_zero[-1]))
cv2.line(image, point1, point2, (0, 0, 255), 2)
point1 = (int(x_zero_xto0[0]), int(960 - y_zero_xto0[0]))
point2 = (int(x_zero_xto0[-1]), int(960 - y_zero_xto0[-1]))
cv2.line(image, point1, point2, (0, 255, 255), 2)
k = calc_slope_line.get_k(alpha,beta,x_bot[i],y_bot[i])
b = calc_slope_line.get_b(x_bot[i],y_bot[i],k)
x = (intercept_top - b) / (k - slope_top)
y = k * x + b
Zw = calc_way.calc_height(x_bot[i],y_bot[i], x, y, alpha, beta)
Xw, Yw = calc_way.calc_distance(x_bot[i],y_bot[i], alpha, beta)
Xw_bot.append(Xw)
Yw_bot.append(Yw)
if i == 0:
max_Zw = Zw
min_Zw = Zw
max_Yw = Yw
min_Yw = Yw
else:
if Zw > max_Zw:
max_Zw = Zw
max_Zw_index = i
if Zw < min_Zw:
min_Zw = Zw
min_Zw_index = i
if Yw > max_Yw:
max_Yw = Yw
max_Yw_index = i
if Yw < min_Yw:
min_Yw = Yw
min_Yw_index = i
point1 = (x_bot[i], 960-y_bot[i])
point2 = (int(x), 960-int(y))
cv2.line(image, point1, point2, (0, 255, 0), 1)
text = f"Xw,Yw:{int(Xw),int(Yw)},Zw:{int(Zw)}"
position = (int(x), 960-int(y))
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1
color = (0, 0, 255)
thickness = 2
cv2.putText(image, text, position, font, font_scale, color, thickness, cv2.LINE_AA)
output_path = os.path.join(output_folder, f'{i+1}.jpg')
cv2.imwrite(output_path, image)
Z = Z + Zw
Y = Y + Yw
file_path = os.path.join(output_folder, 'data.txt')
with open(file_path, 'w', encoding='utf-8') as file:
file.write("该图片数据如下\n")
file.write(f"路沿平均高度为:{Z/len(x_bot)}\n")
file.write(f"最大高度为图{max_Zw_index+1},高度为:{max_Zw}\n")
file.write(f"最小高度为图{min_Zw_index+1},高度为:{min_Zw}\n")
file.write(f"路沿距离车辆平均距离为:{-Y/len(x_bot)}\n")
file.write(f"最远距离为图{min_Yw_index + 1},距离为:{min_Yw}\n")
file.write(f"最近距离为图{max_Yw_index + 1},距离为:{max_Yw}\n")
# 计算路沿与车的夹角
slope_Xw ,intercept_Xw ,r2_Xw = calc_slope_line.linear_regression(Xw_bot, Yw_bot)
angle = math.atan(slope_Xw)
Xw , Yw = calc_way.calc_distance(x_jiao, y_jiao, alpha, beta)
distance = -Yw * math.cos(angle)
distance_door = (-intercept_Xw/slope_Xw)/ ((-intercept_Xw/slope_Xw)-Xw)*distance
image = cv2.imread(img_path) # 默认读取BGR格式
if image is None:
print("Error: 无法读取图像,请检查路径!")
exit()
cv2.circle(image, point, 5, (0, 0, 255), -1)
text = f"Xw,Yw:{int(Xw), int(Yw)},distance:{int(distance)},distance_door:{int(distance_door)}"
position = (int(x_jiao), 960 - int(y_jiao))
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.5
color = (0, 0, 255)
thickness = 2
cv2.putText(image, text, position, font, font_scale, color, thickness, cv2.LINE_AA)
cv2.imshow("Image with Line", image)
cv2.waitKey(0) # 按任意键关闭窗口
cv2.destroyAllWindows()
vs_measurement(txt_name)