You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

297 lines
11 KiB

import numpy as np
import pandas as pd
import calc_way
from scipy import stats
import calc_slope_line
import matplotlib.pyplot as plt
import model
import os
3 months ago
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import RANSACRegressor, LinearRegression
from sklearn.cluster import DBSCAN
# 数据截断线
model = model.Model()
3 months ago
# limit_slope = model.limit_slope
# limit_intercept = model.limit_intercept
def grid_downsample(points, cell_size=15):
"""网格化降采样,保持空间结构"""
df = pd.DataFrame(points, columns=['x', 'y'])
df['x_grid'] = (df['x'] // cell_size) * cell_size
df['y_grid'] = (df['y'] // cell_size) * cell_size
sampled = df.groupby(['x_grid', 'y_grid']).first().reset_index()
return sampled[['x', 'y']].values
"""
读取yolo网络识别路沿的坐标数据,筛选出目标区域的数据点并将路沿上下侧数据分离
参数保存数据的txt文件路径
返回值在目标区域内的下侧数据点坐标x_boty_bot上侧数据点坐标x_top,y_top
"""
3 months ago
def get_data(txt_name,jingdu):
# 加载数据
data = np.loadtxt(txt_name)
int_data = data.astype(int)
# 网格化降采样
grid_sampled = grid_downsample(int_data, cell_size=20)
# 数据截断
x = []
y = []
for i in range(grid_sampled.shape[0]):
grid_sampled[i][1] = 960 - int(grid_sampled[i][1])
if limit_slope * int(grid_sampled[i][0]) + limit_intercept - int(grid_sampled[i][1]) < 0:
continue
x.append(int(grid_sampled[i][0]))
y.append(int(grid_sampled[i][1]))
x = np.array(x)
y = np.array(y)
# 原始数据粗分类
slope, intercept, r_2 = calc_slope_line.linear_regression(x, y)
y_pred = slope * x + intercept
x_bot = []
y_bot = []
x_top = []
y_top = []
for i in range(len(x)):
if x[i] * slope + intercept - y[i] > 0:
x_bot.append(x[i])
y_bot.append(y[i])
else:
x_top.append(x[i])
y_top.append(y[i])
x_bot = np.array(x_bot)
y_bot = np.array(y_bot)
x_top = np.array(x_top)
y_top = np.array(y_top)
slope_bot, intercept_bot, r2_bot = calc_slope_line.linear_regression(x_bot, y_bot)
slope_top, intercept_top, r2_top = calc_slope_line.linear_regression(x_top, y_top)
print(f"未清洗数据拟合上下沿r2_bot = {r2_bot},r2_top = {r2_top}")
# 第一次数据清洗,消除误识别点
# 计算残差
residuals = y - y_pred
# 计算残差的标准差 (MSE的平方根)
residual_std = np.sqrt(np.sum(residuals ** 2) / (len(x) - 2))
standardized_residuals = residuals / residual_std
# 设置阈值 (常用 2.5-3.0 个标准差)
threshold = 2.0
# 标记异常点
outlier_mask = np.abs(standardized_residuals) > threshold
outliers_x = x[outlier_mask]
outliers_y = y[outlier_mask]
print(f"第一次数据清洗发现 {np.sum(outlier_mask)} 个异常点:")
for i, (x_val, y_val) in enumerate(zip(outliers_x, outliers_y)):
print(f"{i + 1}: x={x_val}, y={y_val}, 残差={residuals[outlier_mask][i]:.2f}")
# 剔除异常点
clean_x = x[~outlier_mask]
clean_y = y[~outlier_mask]
clean_slope, clean_intercept, clean_r_2 = calc_slope_line.linear_regression(clean_x, clean_y)
print(f"清洗数据后整体拟合参数r_2 = {r_2}")
# 第一次数据清洗后的数据再分类
x_bot_clean = []
y_bot_clean = []
x_top_clean = []
y_top_clean = []
for i in range(len(clean_x)):
if clean_x[i] * clean_slope + clean_intercept - clean_y[i] > 0:
x_bot_clean.append(clean_x[i])
y_bot_clean.append(clean_y[i])
else:
x_top_clean.append(clean_x[i])
y_top_clean.append(clean_y[i])
x_bot_clean = np.array(x_bot_clean)
y_bot_clean = np.array(y_bot_clean)
x_top_clean = np.array(x_top_clean)
y_top_clean = np.array(y_top_clean)
# 第二次数据清洗,消除误分类点
clean_slope_bot, clean_intercept_bot, clean_r2_bot = calc_slope_line.linear_regression(x_bot_clean, y_bot_clean)
clean_slope_top, clean_intercept_top, clean_r2_top = calc_slope_line.linear_regression(x_top_clean, y_top_clean)
print(f"清洗数据后上下沿拟合参数clean_r2_bot = {clean_r2_bot},clean_r2_top = {clean_r2_top}")
# 绘制拟合线
y_bot_pred = clean_slope_bot * x_bot_clean + clean_intercept_bot
y_top_pred = clean_slope_top * x_top_clean + clean_intercept_top
# 计算残差
residuals_bot = y_bot_clean - y_bot_pred
residuals_top = y_top_clean - y_top_pred
# 计算残差的标准差 (MSE的平方根)
residual_std_bot = np.sqrt(np.sum(residuals_bot ** 2) / (len(x_bot_clean) - 2))
residual_std_top = np.sqrt(np.sum(residuals_top ** 2) / (len(x_top_clean) - 2))
# 计算标准化残差 (Z-score)
standardized_residuals_bot = residuals_bot / residual_std_bot
standardized_residuals_top = residuals_top / residual_std_top
# 设置阈值 (常用 2.5-3.0 个标准差)
3 months ago
threshold = 1.5
# 标记异常点
outlier_mask_bot = np.abs(standardized_residuals_bot) > threshold
outlier_mask_top = np.abs(standardized_residuals_top) > threshold
outliers_x_bot = x_bot_clean[outlier_mask_bot]
outliers_y_bot = y_bot_clean[outlier_mask_bot]
outliers_x_top = x_top_clean[outlier_mask_top]
outliers_y_top = y_top_clean[outlier_mask_top]
print(f"第二次数据清洗下沿发现 {np.sum(outlier_mask_bot)} 个异常点:")
# for i, (x_val, y_val) in enumerate(zip(outliers_x_bot, outliers_y_bot)):
# print(f"点 {i + 1}: x={x_val}, y={y_val}, 残差={residuals_bot[outlier_mask_bot][i]:.2f}")
print(f"第二次数据清洗上沿发现 {np.sum(outlier_mask_top)} 个异常点:")
# for i, (x_val, y_val) in enumerate(zip(outliers_x_top, outliers_y_top)):
# print(f"点 {i + 1}: x={x_val}, y={y_val}, 残差={residuals_top[outlier_mask_top][i]:.2f}")
# 剔除异常点
x_bot_clean = x_bot_clean[~outlier_mask_bot]
y_bot_clean = y_bot_clean[~outlier_mask_bot]
x_top_clean = x_top_clean[~outlier_mask_top]
y_top_clean = y_top_clean[~outlier_mask_top]
# 判断数据的有效性
clean_slope_bot, clean_intercept_bot, clean_r2_bot = calc_slope_line.linear_regression(x_bot_clean, y_bot_clean)
clean_slope_top, clean_intercept_top, clean_r2_top = calc_slope_line.linear_regression(x_top_clean, y_top_clean)
print(f"清洗数据后上下沿拟合参数clean_r2_bot = {clean_r2_bot},clean_r2_top = {clean_r2_top}")
3 months ago
if ((1-clean_r2_bot) > (1-jingdu)) or ((1-clean_r2_top) > (1-jingdu)):
print("无效数据")
return 0, None, None, None, None
return 1, x_bot_clean, y_bot_clean, x_top_clean, y_top_clean
3 months ago
3 months ago
def filter_middle_80_percent(data):
"""
保留数组中间80%的数据删除首尾各10%
3 months ago
3 months ago
参数:
data (np.ndarray): 输入数组可以是一维或多维但会先展平
3 months ago
3 months ago
返回:
np.ndarray: 中间80%的数据
"""
# 展平数组(确保处理的是所有数据点)
flattened_data = data.flatten()
3 months ago
3 months ago
# # 计算10%和90%分位数
# lower_bound = np.percentile(flattened_data, 15)
# upper_bound = np.percentile(flattened_data, 75)
#
# # 筛选中间80%的数据
# mask = (data >= lower_bound) & (data <= upper_bound)
# 计算最大值、最小值和总范围
data_min = np.min(flattened_data)
data_max = np.max(flattened_data)
data_range = data_max - data_min
# 计算中间80%的上下界
lower_bound = data_min + 0.2 * data_range
upper_bound = data_max - 0.1 * data_range
# 筛选数据
mask = (flattened_data >= lower_bound) & (flattened_data <= upper_bound)
return mask
def load_data(txt_name):
"""从用户输入的文件路径加载二维XY数据"""
while True:
filepath = txt_name.strip()
if filepath.lower() == 'q':
return None, None
try:
data = np.loadtxt(filepath)
if data.shape[1] != 2:
print("错误文件必须包含两列数据X和Y")
continue
x = data[:, 0].reshape(-1, 1)
y = data[:, 1].reshape(-1, 1)
y = 960 - y
mask = filter_middle_80_percent(x)
x_clean = x[mask]
y_clean = y[mask]
return x_clean.reshape(-1,1), y_clean.reshape(-1,1)
except Exception as e:
print(f"加载文件出错: {e}")
def ransac_fit(x, y, residual_threshold=2.0):
"""执行RANSAC拟合并返回模型和内点/外点"""
ransac = RANSACRegressor(
LinearRegression(),
residual_threshold=residual_threshold,
random_state=42
)
ransac.fit(x, y)
inlier_mask = ransac.inlier_mask_
outlier_mask = ~inlier_mask
return ransac.estimator_, inlier_mask, outlier_mask
def get_data(txt_name):
# print("=== 双重RANSAC拟合与异常值聚类分析 ===")
3 months ago
3 months ago
# 加载数据
x, y = load_data(txt_name)
if x is None:
return 0, None, None, None, None, None, None, None, None
# 第一次RANSAC拟合
# print("\n正在进行第一次RANSAC拟合...")
model1, inlier_mask1, outlier_mask1 = ransac_fit(x, y, residual_threshold=3.0)
x_inliers1 = x[inlier_mask1]
y_inliers1 = y[inlier_mask1]
# 获取第一次拟合的外点
x_outliers1 = x[outlier_mask1]
y_outliers1 = y[outlier_mask1]
# 第二次RANSAC拟合在外点上
model2, inlier_mask2, outlier_mask2 = None, None, None
if len(x_outliers1) > 10: # 确保有足够的外点进行第二次拟合
# print("\n正在进行第二次RANSAC拟合...")
model2, inlier_mask2, outlier_mask2 = ransac_fit(x_outliers1, y_outliers1, residual_threshold=3.0)
x_inliers2 = x_outliers1[inlier_mask2]
y_inliers2 = y_outliers1[inlier_mask2]
# 获取第二次拟合的外点
x_outliers2 = x_outliers1[outlier_mask2]
y_outliers2 = y_outliers1[outlier_mask2]
mean_outliers1 = np.mean(y_inliers1)
mean_outliers2 = np.mean(y_inliers2)
m1 = model1.predict(np.array([600]).reshape(-1, 1))
m2 = model2.predict(np.array([600]).reshape(-1, 1))
# 判断上下沿
if m1 > m2:
model_top, model_bot = model1, model2
x_top, x_bot = x_inliers1, x_inliers2
y_top, y_bot = y_inliers1, y_inliers2
else:
model_top, model_bot = model2, model1
x_top, x_bot = x_inliers2, x_inliers1
y_top, y_bot = y_inliers2, y_inliers1
# 统一提取斜率和截距
slope_top = model_top.coef_[0][0]
intercept_top = model_top.intercept_[0]
slope_bot = model_bot.coef_[0][0]
intercept_bot = model_bot.intercept_[0]
plt.figure(figsize=(14, 7))
# 绘制原始内点
plt.scatter(x_bot, y_bot,
color='limegreen', marker='o', s=30, alpha=0.7,
label='bot')
plt.scatter(x_top, y_top,
color='red', marker='*', s=100, edgecolor='black',
label='top')
plt.xlabel('X', fontsize=12)
plt.ylabel('Y', fontsize=12)
plt.title(f'{txt_name}', fontsize=14)
plt.legend(fontsize=10, loc='best')
plt.grid(True, alpha=0.3)
# plt.tight_layout()
3 months ago
plt.show()
3 months ago
# print(f"model_top = {model_top.coef_, model_top.intercept_}")
# print("\n分析完成")
return 1, x_bot, y_bot, slope_bot, intercept_bot, x_top, y_top, slope_top, intercept_top